Observation of Van Hove singularities in twisted graphene layers
نویسندگان
چکیده
Electronic instabilities at the crossing of the Fermi energy with a Van Hove singularity1 in the density of states often lead to new phases of matter such as superconductivity2,3, magnetism4 or density waves5. However, in most materials this condition is difficult to control. In the case of single-layer graphene, the singularity is too far from the Fermi energy6 and hence difficult to reach with standard doping and gating techniques7. Here we report the observation of low-energy Van Hove singularities in twisted graphene layers seen as two pronounced peaks in the density of states measured by scanning tunnelling spectroscopy. We demonstrate that a rotation between stacked graphene layers can generate Van Hove singularities, which can be brought arbitrarily close to the Fermi energy by varying the angle of rotation. This opens intriguing prospects for Van Hove singularity engineering of electronic phases. In two dimensions, a saddle point in the electronic band structure leads to a divergence in the density of states, also known as a Van Hove singularity1 (VHS). When the Fermi energy (EF) is close to the VHS, interactions, however weak, are magnified by the enhanced density of states (DOS), resulting in instabilities, which can give rise to new phases of matter2–5 with desirable properties. This implies the possibility of engineering material properties by bringing EF and the VHS together. However, in most materials one cannot change the position of the VHS in the band structure. Instead, it may be possible to tune EF through the VHS by chemical doping8 or by gating7. In this regard, graphene, the recently discovered two-dimensional form of carbon, is quite special5,9. It has linearly dispersing bands at the K (K) point in the Brillouin zone, the so-called Dirac points, and a DOS that is linear and vanishes at Dirac point. The fact that this material is truly twodimensional and has a lowDOSmeans that it cannot screen applied electric fields, allowing for strong gating and ambipolar behaviour7. However, although the band structure of graphene5 contains a VHS, its large distance from the Dirac point makes it prohibitively difficult to reach by either gating or chemical doping. We show that by introducing a rotation between stacked graphene layers, it is possible to induceVHSs that arewithin the range ofEF achievable by gate tuning. As the samples studied here are not intentionally doped, EF is within a fewmillielectronvolts of the Dirac point. Rotation between graphene layers is often observed as a Moiré pattern on graphite surfaces10, as illustrated in Fig. 1. Graphite consists of stacked layers of graphene, the lattice structure of which contains two interpenetrating triangular sublattices, denoted A and B. In the most common (Bernal) stacking, adjacent layers
منابع مشابه
Unraveling the intrinsic and robust nature of van Hove singularities in twisted bilayer graphene by scanning tunneling microscopy and theoretical analysis.
Extensive scanning tunneling microscopy and spectroscopy experiments complemented by first-principles and parametrized tight binding calculations provide a clear answer to the existence, origin, and robustness of van Hove singularities (vHs) in twisted graphene layers. Our results are conclusive: vHs due to interlayer coupling are ubiquitously present in a broad range (from 1° to 10°) of rotati...
متن کاملEvidence for interlayer coupling and moiré periodic potentials in twisted bilayer graphene.
We report a study of the valence band dispersion of twisted bilayer graphene using angle-resolved photoemission spectroscopy and ab initio calculations. We observe two noninteracting cones near the Dirac crossing energy and the emergence of van Hove singularities where the cones overlap for large twist angles (>5°). Besides the expected interaction between the Dirac cones, minigaps appeared at ...
متن کاملCorrigendum: Selectively enhanced photocurrent generation in twisted bilayer graphene with van Hove singularity
Graphene with ultra-high carrier mobility and ultra-short photoresponse time has shown remarkable potential in ultrafast photodetection. However, the broad and weak optical absorption (∼ 2.3%) of monolayer graphene hinders its practical application in photodetectors with high responsivity and selectivity. Here we demonstrate that twisted bilayer graphene, a stack of two graphene monolayers with...
متن کاملObservation of van Hove Singularities in Twisted Silicene Multilayers
Interlayer interactions perturb the electronic structure of two-dimensional materials and lead to new physical phenomena, such as van Hove singularities and Hofstadter's butterfly pattern. Silicene, the recently discovered two-dimensional form of silicon, is quite unique, in that silicon atoms adopt competing sp(2) and sp(3) hybridization states leading to a low-buckled structure promising rela...
متن کاملSingle-layer behavior and its breakdown in twisted graphene layers.
We report high magnetic field scanning tunneling microscopy and Landau level spectroscopy of twisted graphene layers grown by chemical vapor deposition. For twist angles exceeding ~3° the low energy carriers exhibit Landau level spectra characteristic of massless Dirac fermions. Above 20° the layers effectively decouple and the electronic properties are indistinguishable from those in single-la...
متن کامل